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A new analytic equation of state for liquid water
C. A. Jeffery and P. H. Austina)
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~Received 20 May 1998; accepted 1 October 1998!

We develop a new analytical equation of state for water based on the Song, Mason, and Ihm
equation of state and Pooleet al.’s simple model of the free energy of strong tetrahedral hydrogen
bonds. Repulsive and attractive forces are modeled using a modification of the Weeks–Chandler–
Anderson decomposition of the pair potential, with closed tetrahedral hydrogen bonds contributing
both internal energy and entropy to the free energy of water. Strong tetrahedral hydrogen bonds are
modeled explicitly using a simplified partition function. The resulting equation of state is 20–30
times more accurate than equivalent simple cubic equations of state over a wide range of pressures
~0.1→3000 bar! and temperatures~234→1200 °C! including the supercooled region. The new
equation of state predicts a second liquid–liquid critical point atpC850.954 kbar, rC8
51.045 g cm23 and TC85228.3 K. The temperature of this second critical point is above the
homogeneous freezing temperature at 1 kbar, thus this region of the phase diagram may be
experimentally accessible. The phase diagram also suggests that the homogeneous nucleation
temperature above 1.2 kbar may be determined by a phase transition from high-density water to
low-density water. ©1999 American Institute of Physics.@S0021-9606~99!52701-3#
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I. INTRODUCTION

Liquid water exhibits a rich variety of anomalous beha
ior, particularly in the supercooled region. Features of
phase diagram for water such as the density maximum
4 °C and the minima in the isothermal compressibilityKT

and isobaric specific heatCp are generally acknowledged t
be manifestations of the hydrogen bond structure, which
low temperatures produces anomalous behavior in which
internal energy, entropy, and density all decrease with
creasing temperature.1

Below we present an analytic equation of state t
quantitatively captures this behavior at supercooled temp
tures, as well as accurately reproducing the pressu
volume–temperature dependence of water over a br
range of temperatures and pressures. We follow the appr
of Pooleet al.,2 who showed that the density maximum
water can be qualitatively reproduced by combining the v
der Waals equation of state with a simple partition funct
describing the density dependence of the free energy of
drogen bonds. To produce quantitative predictions using
approach we extend the work of Pooleet al. by:

~1! Replacing the van der Waals equation of state b
modified version of the equation of state proposed
Song, Mason, and Ihm.3

~2! Modifying the representation of the free energy of h
drogen bonds to localize the temperature range o
which strong hydrogen bonds influence the properties
water.

In Sec. II we briefly review the Song, Mason, and Ih
~SMI! equation of state, discuss modifications needed to
ply it to water, and evaluate its accuracy over the tempe

a!Electronic mail: phil@geog.ubc.ca
4840021-9606/99/110(1)/484/13/$15.00
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ture and pressure range234<T<1200 °C, 0.1<p
<3000 bar. In Sec. III we add the free energy of open h
drogen bonds,4 and demonstrate the improved predicti
power of the equation of state in the supercooled regi
Section IV presents the resulting phase diagram showing
second critical point, and Sec. V contains a discussion
conclusions.

II. THE BULK EQUATION OF STATE

A. The Song and Mason equation of state

In a series of articles Song, Mason, Ihm, a
colleagues3,5,6 have derived a simple analytic equation
state for nonpolar fluids. Their starting point is the equat
relating pressurep to the pair distribution functiong(r ):7

p

rRT
512

2p

3

r

RTE0

` du~r !

dr
g~r !r 3dr, ~1!

whereu(r ) is the intermolecular pair potential as a functio
of radial distancer, T the temperature,r the density, andR
the ideal gas constant. Although the derivation of Eq.~1!
assumes pairwise additivity foru(r ), many-body effects can
still be incorporated through the pair distribution functio
g(r ).

Rearrangement of terms in this equation yields a form
which the second virial coefficient,B2(T), appears explicitly

p

rRT
511B2r1rI , ~2!

with

B252pE
0

`

~12e2bu!r 2dr, ~3a!

I 5
2p

3 E
0

`

f ~r !@y~r !21#r 3dr, ~3b!
© 1999 American Institute of Physics

IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



.

pe
o
r
se
ion

-

d

-

es

ls

–

e-
l

s

f
r-

er,
r
e-

so
r

q.
are

ing
ond

a-

is

sive

f
f the

485J. Chem. Phys., Vol. 110, No. 1, 1 January 1999 C. A. Jeffrey and P. H. Austin
y~r !5ebug~r !, ~3c!

f ~r !52b
du

dr
e2bu, ~3d!

b51/RT, and the functionsy(r ) and f (r ) are, respectively,
the cavity distribution function and the weighting function6

The division of Eq.~1! given in Eq.~2! is motivated by
the observation that the attractive forces have a weak de
dence on density that can be approximated by the sec
virial coefficient alone. ThusI, which contains higher orde
terms in density, is dominated by the repulsive forces. To
explicitly the relative roles played by attraction and repuls
in the integralI , Tao and Mason8 follow Weeks9 and split
the pair potentialu(r ) into a partu0(r )<0 representing only
repulsive forces and a partul(r )>0 representing only attrac
tive forces:

u0~r !5H u~r !1e, r ,r m

0, r.rm
, ~4a!

ul~r !5H 2e, r ,r m

u~r !, r .r m
, ~4b!

wheree.0 is the depth of the potential well andr m is the
radial distance at whichu(r ) has its minimum value. They
then assume that the dominant contribution toI comes from
r ,r m ~repulsive forces! and after some manipulation fin
that

I'a@G~s1!21#, ~5!

where G(s1) is the pair distribution function of hard
spheres at contact,s1 is the equivalent hard sphere diam
eter, anda is a temperature dependent function.

Ihm et al.3 determined that an accurate empirical expr
sion for G(s1) is

G~s1!5
1

12lbr
, ~6!

whereb is a temperature dependent function andl is a con-
stant. The productlb is analogous to the van der Waa
excluded volume. Substituting Eq.~6! into Eq. ~5! produces

I 5aF 1

12lbr
21G . ~7!

Substituting Eq.~7! into Eq. ~2! gives the completed Song
Mason–Ihm equation of state:

p

rRT
511B2~T!r1arF 1

12lbr
21G . ~8!

Ihm et al.3 found expressions for the temperatur
dependent coefficientsa andb in terms of the pair potentia
u(r ). Given these coefficients andB2, the pair distribution
function can then be expressed using Eq.~8! as a function of
p, r, andT

G~br!5F p

rRT
211~a2B2!rG /ar. ~9!

We can usep-V-T data and Eq.~9! to calculate values
of G. From Eq.~6! it can be seen that, if the approximation
Downloaded 15 May 2002 to 128.165.156.80. Redistribution subject to A
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represented by Eqs.~4! and ~5! are accurate, a plot o
1/G(br) versusbr should produce a straight line with inte
cept 1 and slope2l. Ihm et al.3 have shown that this is the
case for many noble gas fluids. As Fig. 1 shows, howev
inserting p-V-T data and aB2 expression appropriate fo
water into Eq.~9! produces a relatively poor correlation b
tween 1/G and the best-fit straight line.

B. Modifications for a polar fluid

In this section we modify the SMI equation of state
that it can accurately reproducep-V-T measurements fo
water. The modifications consist of:

• Changing the partitioning of the pair potential in E
~4! so that the attractive and repulsive contributions
clearly separated.

• Evaluating these attractive and repulsive terms us
p-V-T measurements and estimates of the hydrogen b
energy and entropy.

In Secs. II B 1–II B 3 we present the the modified equ
tion of state, replacingB2, a, andb(T) in Eq. ~8! with ex-
pressions appropriate for a polar fluid. We use Ihmet al.
strong principle of corresponding states3 @Eq. ~6!# to deter-
mine the values for these expressions using thep-V-T data
of Fig. 1. A more detailed derivation of the results of th
section is available in a separate Appendix.10

1. Partitioning the pair potential

To find an alternative to the partitioning given by Eq.~2!
that unambiguously separates the attractive and repul
contributions of the pair potential, we begin by splittingu(r )
into its attractive and repulsive parts

u~r !5H u1~r !, r .r m

u2~r !, r ,r m
, ~10!

FIG. 1. 1/G vs br using Eq.~9!, b anda from Taoet al. ~Ref. 8! andB2

from Hill and MacMillan ~Ref. 45!. Also shown is a best fit straight line
with slope 2l, y-interceptYint and rms deviation, Dev. The 805p-V-T
values are from Haaret al. ~Ref. 42! in the range 0,T,700 °C, 0.1,P
,1200 bar, 250,r,1015 kg m23. The discrete lines in the lower half o
the figure represent isotherms spaced 20 °C. Points in the upper half o
figure are above the critical point~Ref. 11!.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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wherer is the radial coordinate andr m is the distance to the
minimum of the potential.

Inserting Eq.~10! into Eq. ~1! yields

p

rRT
512

2p

3

r

RTEr m

` du1

dr
g~r !r 3dr

2
2p

3

r

RTE0

r mdu2

dr
g~r !r 3dr

512UAr2URr. ~11!

where the subscriptsA andR refer to attractive and repulsive
respectively.

2. Expressions for U A and U R

The attractive contributionUA in Eq. ~11! can be ob-
tained from the free energy due to the attractive part of
potential,A(1), via

UA5
1

RT

]A~1!

]r
, ~12!

where

A~1!52
r

2Er m

`

u1~r !g~r !4pr 2dr, ~13!

with u1(r ) defined in Eq.~10!.
This expression for the free energy is analogous to

first-order contribution of attractive forces to the free ene
of a van der Waals liquid,7 which we write as

A~1!52a* r, ~14!

wherea* includes the effect of hydrogen bonds. To estim
a* note that hydrogen bonds contribute entropy,SHB , as
well as energy,eHB to the partition function so thata* can
be written as the sum of these contributions

a* 5a1b* RT, ~15a!

a'eHB /r, ~15b!

b* 'SHB /Rr. ~15c!

Substituting Eq.~15a! into Eq.~14! and using Eq.~12! yields

UA52b* 2a/RT. ~16!

Thus UA•RTr is simply the van der Waals attractive forc
2aVWr with an additional entropy term2b* RTr. Because
of the similar role played bya andaVW in this derivation10

the value ofaVW will be used fora below

a5aVW5
27R2TC

2

64pC
50.5542 Pa m6 mol22, ~17!

whereTC and pC are, respectively, the critical temperatu
and pressure for water.11

To evaluateUR we follow Song and Mason6 in expand-
ing y(r ) in r
Downloaded 15 May 2002 to 128.165.156.80. Redistribution subject to A
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UR'aG~s1!

5
a

12lbr
. ~18!

Substituting Eqs.~16!–~18! into Eq. ~11! produces the
modified equation of state

p

rRT
512b* r2

aVWr

RT
1

ar

12lbr

511S a2b* 2
aVW

RT D r1arF 1

12lbr
21G . ~19!

3. Determining b * , a, and b „T… for liquid water

In the SMI equation of state the temperature depende
of both a and b are determined by integrating over an a
proximate intermolecular potential for nonpolar fluids. Th
find thata depends only weakly on temperature for a~12,6!
potential; we will treata as constant when we estimate i
value for water below. The excluded volume termb in-
creases with decreasing temperature for a~12,6! potential.
This increase will be larger for water than for a nonpo
fluid, because below 4 °C at 1 bar the specific volume
creases rapidly with decreasing temperature. We will spe
a functional form ofb(T) that increases with decreasingT,
and usep-V-T data to estimate two undetermined coef
cientsb1 andb2

b~T!/yB50.25e1/~2.3T/TB10.5!2b1e2.3T/TB1b2 . ~20!

We show the fitted form of Eq.~20! in Sec. III B below.
Given Eq.~19!, the new expression forG(br) is

G~br!51/~12lbr! ~21a!

511F p

rRT
212S a2b* 2

aVW

RT D rG /ar. ~21b!

We use nonlinear least squares10 to fit a, b* , b1, andb2,
minimizing the difference between 1/G found using Eq.
~21b! with p-V-T data and 1/G computed usingp from Eq.
~19!. Figure 2 shows the final fit with the data of Fig. 1. Th
factor of 0.25 in Eq.~20!, which is absorbed inlb(T), is
chosen so thatl'0.3. From Fig. 2 the final value ofl is
0.3159, with the final fit returninga/yB52.145, b* /yB

51.0823,b150.027 74 andb250.235 78, whereyB denotes
the Boyle volume.12 These best fit values fora andb* differ
by only 0.2% and 5%, respectively, from simple estima
based on the entropy and free energy of water.10 Comparing
values ofDev in Figs. 1 and 2, whereDev is the root-mean-
square~rms! deviation between 1/G calculated using Eqs
~21a! and Eq. ~21b!, shows that the modified equation o
state reducesDev by an order of magnitude compared wi
the fit usingB2 in Fig. 1.

Figure 3 and Table I show a comparison of densit
calculated using the new equation of state@Eq. ~19!#, the
Song and Mason equation of state@Eq. ~2!#, the Peng Rob-
inson equation of state,14 and the van der Waals equation
state. For this comparison we used the data of Fig. 1 plus
additional 105p-V-T measurements of water vapor to cov
the range: 80,T,370 °C, 0.4,p,200 bar, 0.16,r
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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,145 kg m23. Taoet al.8 derived a correction term for Eq
~8! that improves the ability of the SMI equation of state f
vapour pressures; this correction term, adapted for Eq.~19!,
is discussed in Appendix A and has been used in Fig. 3
Table I for both the SMI and the new equation of state.
shown in Table I, the new equation of state is on aver
20–30 times more accurate than these other cubic equa
of state.

It is more difficult to fit Eq. ~21! to p-V-T data that
includes either pressures and temperatures above but clo
the critical pressure, to high-density data (r.1025
kg m23) or to supercooled data. Figure 4 shows the bes
with the addition of data near the critical pressure and te
perature~upper left hand corner of the plot!, 25 high density
data points (0,T,150 °C, 300,p,3000 bar, 1025,r
,1109 kg m23), and 245 supercooled points (234,T
,0 °C, 1,p,500 bar, lower right hand corner of the plot!.

FIG. 2. 1/G vs br using Eqs.~18!, ~19!, and thep-V-T data of Fig. 1. Also
shown is a best fit straight line with slopel, y-interceptYint and rms devia-
tion, Dev.

FIG. 3. Comparison of the predictive accuracy of four equations of st
The 1486p-V-T values are from Haaret al. ~Ref. 42! in the range 0,T
,1200 °C, 0.1,p,3000 bar, 0.16,r,1025 kg m23. Data was binned
~bin width524 kg m23), and rms percentage deviations of the predic
density calculated and smoothed.
Downloaded 15 May 2002 to 128.165.156.80. Redistribution subject to A
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The supercooled data is from Hare and Sorensen14 and also
includes high-pressurep-V-T data produced by integratin
Hare and Sorensen’s density measurements assuming
speed of sound correlation of Petitetet al.15

Figure 4 shows a systematic deviation from the law
strong corresponding states at both small and large value
br. The supercooled data falls into two clusters in t
bottom-right hand corner of the figure. The cluster lyin
along the best fit line is supercooled data in the region wh
the density of water anomalously decreases with decrea
temperature. The diverging points above the best fit lines
high-pressure–high-density data in which the dens
anomaly is suppressed. In Sec. III below we show that the
in this highbr region can be significantly improved by ex
plicitly incorporating strong hydrogen bonds into the equ
tion of state.

III. THE EFFECT OF HYDROGEN BONDS

In the derivation of the present equation of state, hyd
gen bonds~HBs! with energy2aVWr and entropy2b* r
provide the attractive force that holds the fluid together, i
at a given temperature and pressure the effect of HBs i
increase the density. Below we will extend the equation
state to describe the behavior of water as it is cooled be
4 °C. When water is cooled below this temperature at atm
spheric pressure its density, entropy and internal energy
decrease due to the formation of hydrogen bonds in an o

e.
FIG. 4. 1/G vs br as in Fig. 2. 1256p-V-T values are from Haaret al.
~Ref. 42! in the range 0,T,1200 °C, 0.1,p,3000 bar, 100,r,1109
kg m23. Supercooled data~245 points! is from Hare and Sorensen~Ref. 14!
and Petitetet al. ~Ref. 15! in the range234,T,0 °C, 1,p,500 bar. The
split in the data in the bottom-right corner of the figure is the result
water’s density anomaly.

TABLE I. Comparison of the average rms percentage deviation of the
dicted density of four equations of state. Data is in the range 0,T
,1200 °C, 0.1,p,3000 bar, 0.16,r,1025 kg m23. Note that water va-
por data is included but not densities greater than 1025 kg m23.

Present Song & Mason
Peng–Robinson

~Ref. 13! van der Waals

Deviation 0.507 11.06 21.7 59.7
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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approximately four-coordinated structure.4 Numerous mix-
ture models have been developed which treat these open
rahedral HBs as a different species of water that, wh
formed, can exert their own pressure.16–18 In this section we
adapt a particularly simple mixture model developed
Pooleet al.2 to the equation of state presented in Sec. II, a
use it to quantitatively predict the thermodynamic propert
of water at supercooled temperatures.

A. Free energy of open tetrahedral hydrogen bonds

The effect of hydrogen bonds on the thermodynamic
havior of liquid water can be described by a Helmholtz fr
energy,AHB , that was approximated by Pooleet al.2 using a
partition function with two species of HBs

AHB52 f RT ln@V01exp~2eHB /RT!#

2~12 f !RT ln~V011!, ~22!

where f is the fraction of HBs that are capable of formin
strong~open! bonds with energy,eHB , andV0 is the number
of configurations of weak bonds with energy 0. The config
ration number,V0, can be written as

V05exp~2S0 /R!, ~23!

whereS0 is the entropy of formation of a mole of weak HB
Pooleet al.2 argued that strong HBs are most likely to occ
when the bulk molar volumeV is equal to the specific vol
ume of iceI h ~i.e., VHB51.087 cm3 g21), and therefore, ap
proximatedf as

f ~V!5exp2@~V2VHB!/s#2, ~24!

where the parameters characterizes the width of the regio
surroundingVHB in which strong HBs are able to form.

For their qualitative model Pooleet al. took S0 to be the
entropy of formation of a mole of strong hydrogen bon
~290 J K21 mol21), chose a width parameters50.25VHB ,
and used the van der Waals equation of state to supply
background attractive force due to closed~nonopen! hydro-
gen bonds. The contribution of Eq.~22! to the total pressure
is therefore

p5pEOS12pHB , ~25!

where pEOS refers to the pressure calculated using the v
der Waals equation of state, andpHB is determined using Eq
~22! and the Maxwell relation

p5S ]A

]VD
T

. ~26!

The factor of 2 in Eq.~25! accounts for the fact there ar
two moles of HBs for every mole of molecules. As we d
cuss in Sec. IV, Pooleet al. showed that with these param
eter values andeHB5222 kJ mol21 ~;80% of the HB en-
ergy of ice!, Eq. ~25! produces a second critical point
positive pressure.
Downloaded 15 May 2002 to 128.165.156.80. Redistribution subject to A
tet-
n

y
d
s

-

-

he

n

B. Adding open hydrogen bonds to the new equation
of state

In order to improve the performance at supercooled te
peratures of the equation of state described in Sec. II, we
use the approach of Eq.~25! with the following modifica-
tions ~discussed in greater detail below!:

~1! ReplacepEOScalculated using the van der Waal equati
in Eq. ~25! with pEOSgiven by Eq.~19!, using the values
for a, andb* found in Sec. II B 3.

~2! Modify the Pooleet al. estimates of the energy of stron
hydrogen bonds and the entropy of the weak HBs~de-
creasinguS0u from 90 kJ mol21 K21 to 51 kJ mol21 K21

and ueHBu from 22 kJ mol21 to ueHBu'13.5 kJ mol21).
~3! Replace the volume dependent expression for the str

hydrogen bond fractionf (V) @Eq. ~24!# with a tempera-
ture and density dependent expression that falls rap
to zero at temperatures above 0 °C.

~4! Modify the temperature-dependent excluded volu
term b(T) in Eq. ~19! to reflect the fact that, as water i
cooled below 20 °C, open hydrogen bonds act to
crease the density of the fluid, reducing the need for
excluded volume termb(T) to increase steeply at low
temperatures.

Beginning with item 2, we note that the total energy
hydrogen bonds in water,Etotal, now has two contributions
~i! the van der Waal’s free energyAVW5aVWr @Eq. ~14!#,
~ii ! the bond energy contributed by strong HBs:EHB5 f eHB

5AHB1T]AHB /]T. We estimateAVW at the density of ice
to be '214.2 kJ mol21 ~assuming 2 moles of HBs/mol
water!.10 If we assume thatf 51 at temperatures below th
glass transition, where19 Etotal '228 kJ mol21, then we
haveEHB5Etotal2AVW5eHB5213.8 kJ mol21. This value
for eHB is close to the measured value ofeHB

5213.4 kJ mol21 in supercooled water.20 We will, there-
fore, assume thateHB is approximately independent of tem
perature and density, and that changes in the bond en
Etotal arise due to the temperature and density dependenc
the fractionf of strong hydrogen bonds.

The entropy of the weak HBs,S0, can also be estimate
from simple physical arguments. At 1 bar and 100 °C t
entropy of water vapor is 196 J mol21 K21. In liquid water
at 100 °C the configurational~i.e., total minus vibrational!
entropy is about 26% of the total entropy.21 In water vapor,
we would expect this percentage to rise somewhat since
increase in bonded states should be greater than the inc
in vibrational states. Therefore, as a lower bound on
magnitude of the entropy we takeuS0u50.263196
J mol21 K21551 J mol21 K21 per mole of water. Note tha
in water vapor the hydrogen bond interaction is domina
by dimer formation and, therefore, there is one mole of H
per mole of water molecules.

In addition, we will extend Eq.~22! to include the pos-
sibility that there areVHB configurations of strong HBs

AHB52 f RT ln@V01VHB exp~2eHB /RT!#

2~12 f !RT ln~V01VHB!, ~27!

where
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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VHB5exp~2SHB /R!, ~28!

with VHB!V0.
For item 3, note that the volume dependence of

strong bond fractionf given by Eq.~24! causesf to increase
as water is heated beyond its minimum specific volume
4 °C and atmospheric pressure. To prevent this spurious
crease inf we add a steep cutoff above the freezing tempe
ture

f ~T,r!5 f * ~r! f ** ~T!, ~29a!

f * ~r!5
11C1

exp@~r2rHB!/s#21C1

, ~29b!

f ** ~T!5exp@20.18~T/Tf !
8#, ~29c!

whereTf5273.15 K and 0,C1,1. The density dependen
term, f * (r), is a Gaussian-like function centered arou
densityrHB in analogy to Eq.~24!, andf ** (T) is a low-pass
filter centered atTf . We have switched to density as o
dependent variable so that Eq.~29! can be easily included in
the equation of state. The modified Gaussian of Eq.~29b!
was chosen to produce a more linear dependence off on
density than the Gaussian of Eq.~24!.

To estimates, we will assume an upper limit of the
effect of open HBs at the density of high-density amorpho
ice:22 r51.169 g cm23. Taking the lower limit of the den-
sity of open HBs as the ice densityr i50.92 g cm23:

2s51.16920.92 g cm23,
~30!

s50.135r i .

Fitted values for the coefficientsC1 and s as well as the
hydrogen bond densityrHB will be determined in Sec. III C.

Addressing item 4, we choose a new functional form
the excluded volume termb(T) defined in Eq.~20! that re-
duces the rise inb(T) at supercooled temperatures

b~T!/yB50.2 exp~221.4~T/TB10.0445!3!

2b1 exp~1.016T/TB!1b2 , ~31!

whereyB ,TB are the Boyle volume and temperature and v
ues for the coefficientsb1 andb2 will be determined in Sec
III C.

C. The final form of the equation of state

In this section we will employ the optimization proce
dure described in the addendum10 to determine values fo
eHB , S0, SHB , s, rHB , C1, b1, b2 andl using Eq.~25! with
pEOSgiven by Eq.~19! andb(T) by Eq.~31!. We findpHB in
Eq. ~25! using Eqs.~26! and ~27!. Values forb* anda are
taken unchanged from Sec. II B 3.

Figure 5 shows the final form of the fit using the data
Fig. 4 excluding 182 data points near the critical point. T
addition of pHB has brought the supercooled data in t
lower right hand corner of Fig. 4 into better agreement w
the law of strong corresponding states, reducingDev by a
factor of 5. The coefficients returned from the fit are:10
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eHB5211.490 kJ mol21,

S05261.468 J mol21 K21 ,

SHB525.128 J mol21 K21,

rHB50.8447 g cm23,

C150.7140, ~32!

s50.1425 g cm2350.1687rHB ,

b150.250 81,

b250.998 59,

l50.3241.

As in Sec. II B 3, the final values of fitted coefficients su
aseHB , S0, rHB , ands are within 20%–30% of their initial
estimated values.

Figure 6 shows the effect of strong hydrogen bonds
the excluded volume termb(T). The solid line labeled
b~12,6! is taken from Taoet al.8 and is appropriate for non
polar fluids. This can be compared with the two versions
b(T) given by Eq.~20! ~dotted line, labeled ‘‘b’’ ! and Eq.
~20! ~dashed line, labeled ‘‘b with pHB’’ !. The inclusion of
pHB produces a less rapid increase inb(T) at lower tempera-
tures because the anomalous decrease in density at s
cooled temperatures can be fit instead by thepHB term in Eq.
~25!.

Densities generated by Eq.~25! at pressures between
and 2800 bar are shown in Fig. 7. The inset shows the
moval of the density maximum as the pressure is increa
from 800 to 1200 bar. At low temperatures and pressures,
formation of open HBs forces a local density commensur
with their perfect tetrahedral geometry. As a result the d
sity of water decreases with decreasing temperature.
higher pressures, the pressure breaks the perfect geome
the HBs and the density maximum is absent.

The removal of the density maximum with increasin
pressure can also be seen in Fig. 8, which shows isothe

FIG. 5. 1/G vs br with the addition ofpHB . Thep-V-T data~1319 points!
is from Fig. 4 excluding 182 points near the critical point. For a fit to
expanded range ofp-V-T values that includes higher temperatures and w
ter vapor see Eq.~A1!.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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between240 °C and 500 °C. Above'850 bar the super
cooled isotherm~240 °C! is denser than the 0 °C isotherm
However, at low pressures, the supercooled isotherm cro
the 0 °C isotherm and becomes less dense. This behavi
consistent with the experimental evidence that the temp
ture of the density maximum is displaced to lower tempe
tures by increasing pressure.23 Further discussion of the per
formance of the equation of state with and without hydrog
bonds is given in the addendum.10

The free energyA, entropyS, and heat capacityCp can
also be obtained from Eq.~25! using Eq.~26! and the Max-
well relations

S52S ]A

]TD
r

, Cp5TS ]S

]TD
P

. ~33!

In Appendix B we derive expressions forA for the equation
of state with and without strong hydrogen bonds, using
~33! to obtain the heat capacity for pressures between 1
800 bar and temperatures between235 °C and 800 °C. As

FIG. 6. Comparison of the excluded volumeb as a function of the tempera
ture normalized by the Boyle temperatureTB . Solid line: b computed by
Tao et al. ~Ref. 8! for a ~12,6! potential. Dotted line: Eq.~30! with coeffi-
cients determined by fitting Eq.~18! with the data of Fig. 2. Dashed line: Eq
~30! with coefficients determined by fitting the equation of state with
hydrogen bond term to the data of Fig. 4.

FIG. 7. Isobaric density.s from Haaret al. ~Ref. 42!, Hare and Sorensen
~Ref. 14! and Petitetet al. ~Ref. 15!.
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we show in Appendix B the equation of state reproduc
both the anomalous increase in heat capacity at 1 bar and
temperatures and the decrease in heat capacity below 0
higher pressures.

In the next section we examine the behavior of the eq
tion of state at low temperatures in the metastable region
the phase diagram.

IV. THE THERMODYNAMIC BEHAVIOR OF WATER AT
LOW TEMPERATURES

In Sec. III and Appendix A we added open hydrog
bonds to the modified SMI equation of state, showing tha
can accurately reproduce the observed thermodynamic
havior of water over a wide range of temperatures and p
sures. In this section we will examine the behavior of t
equation of state at low temperatures for which the liqu
phase is metastable and, therefore, inaccessible to obs
tion. Central to the prediction of the thermodynamic beha
ior of water at these temperatures is the behavior of
vapor–liquid spinodal,24 Ps(T), defined as the locus of iso
chore minima satisfying

S ]P

]T D50. ~34!

The behavior ofPs(T) is closely related to the questio
of whether water has a second critical point. One propo
first suggested by Speedy and Angell,25 is the ‘‘stability limit
conjecture,’’26,27 which postulates that in thep,T plane the
spinodal is ‘‘reentrant,’’ tracing a continuous curve from th
critical temperature and pressure to negative pressu
where it reaches a minimum before returning to posit
pressures at supercooled temperatures.24

More recently, Pooleet al.24,28 have proposed that th
phase diagram of water contains a new liquid–liquid sp
odal terminating in a second critical point. This new spinod
defines an area in which two forms of supercooled wa
exist: Low-density water~LDW! and high-density water
~HDW!. Thus in this theory the vapour–liquid spinodal
divergent, as is the case for a simple van der Waals liq

FIG. 8. Isotherms showing the suppression of the density maximum
higher pressures.s from Haaret al. ~Ref. 42!.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



le
ol

n
-
c

d

f
a

of
or
II

ice

o

h

not
er-
lso
ws
ter-
g

by
y

bil-
t

ater
s-

n-
re
tes

e
n aMD

int
ns of

491J. Chem. Phys., Vol. 110, No. 1, 1 January 1999 C. A. Jeffrey and P. H. Austin
Because of the absence of a stability limit for supercoo
water, there is a continuity of states between liquid and s
water.

The Pooleet al.2 mixture model described in Sec. III A
can produce either a reentrant spinodal, givenueHBu
514 kJ mol21, or a second liquid–liquid spinodal, give
ueHBu522 kJ mol21. In Figs. 9 and 10 we show the spin
odals for the new equation of state, calculated using the
efficient values of Eq.~32! and Appendix A. Even though
the best-fitueHBu511.5 kJ mol21 for the new equation of
state is smaller than Poole’s 14 or 22 kJ mol21, the new
equation of state produces a second LDW–HDW spino
with a critical point atTc5228 K,pc5954 bar. Figure 10 is
very similar to the phase diagram proposed by Pooleet al.29

and Stanleyet al.,30 with the exception of the termination o
the liquid–liquid spinodal at much larger positive and neg
tive pressures~not shown!. There have been a wide range
other estimates for the values of the critical parameters f
liquid–liquid spinodal. Some of these are listed in Table
including the recent estimate of Mishima and Stanley31 based

FIG. 9. The vapor–liquid spinodal terminating at a critical pointC, and the
LDW–HDW spinodal terminating at a second critical pointC8.

FIG. 10. Same as Fig. 9. Also shown are the equilibrium line and the T
line.
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on measurements of decompression-induced melting of
IV.

The equilibrium line separating HDW and LDW is als
shown on Fig. 10~short-dashed line!. It is natural to associ-
ate HDW, which lies to the left of the equilibrium line, wit
high-entropy–high-density amorphous-solid water~called
Water II by Speedy32!. Speedy32 showed that Water II, ob-
tained by vapor deposition between 136 and 150 K, can
be connected to supercooled liquid water at 236 K by a th
modynamically continuous and reversible path. This is a
true of HDW for the new equation of state. Figure 10 sho
that HDW heated at atmospheric pressure from 150 K in
sects the HDW–LDW spinodal at 167 K without crossin
the equilibrium curve, and thus is not connected to LDW
a continuous path. The instability limit of 167 K predicted b
the new equation of state is very close to the 170 K insta
ity limit estimated by Speedy.32 Figure 10 demonstrates tha
a thermodynamically self-consistent phase diagram of w
is possible without moving the critical point to negative pre
sures as suggested by Tanaka.33

The temperature of maximum density~TMD! line shown
on Fig. 10 consists of the locus of points for which the de
sity given by the new equation of state is maximum. Figu
12 shows that, at positive pressures, the TMD line termina
at a spinodal as predicted by Speedy.26 The new equation of

FIG. 11. Comparison of isothermal compressibility (KT) maxima between
the new equation of state of water, and the ST2 and TIP4P potentials~Ref.
35!. The line of KT maxima exhibits a smooth transition from ST2 lik
behavior nearp50 kbar to TIP4P behavior at higher pressures, ending i
second critical point (C8).

TABLE II. Comparison of the critical parameters of a second critical po
in water generated from the present equation of state with the estimatio
other authors.

pC8 ~kbar! rC8 (g cm23) TC8 ~K!

Present 0.954 1.045 228.3
Stanleyet al. ~Ref. 30! 1.2 ••• 185
Ponyatovskiı˘ et al. ~Ref. 46! 0.33 ••• 225
Tanaka~Ref. 33! 21.0 ••• 240
Sciortinoet al. ~Fig. 12! ~Ref. 35! ••• 1.08 180
Sciortinoet al. ~Fig. 13! ~Ref. 35! 1.2 ••• 200
Mishima and Stanley~Ref. 31! 1 ••• 220
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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state gives a TMD at atmospheric pressure of 1.5 °C, 2.
less than the experimentally measured maximum. This
be contrasted with the TMD calculated from molecula
dynamics simulations using the ST2 and TIP4P interpart
potentials.24 The TIP4P potential produces a TMD in th
vicinity of 260 K, which is;17 K below the experimenta
TMD at atmospheric pressure.24 Thus the thermodynamic
anomalies predicted by TIP4P are somewhat weaker tha
real water. The ST2 potential, on the other hand, exhibi
TMD ;35 K above the experimental TMD, and therefo
overestimates the thermodynamic anomalies of water.24 The
strong anomalous behavior of ST2 is attributed to the f
that ST2 overemphasizes the tetrahedral character of thH-
bonding groups on the water molecule.24

Another thermodynamic parameter that can be ca
lated from the equation of state is the locus of isotherm
compressibility (KT) maxima in the (p,T) plane. Sastry
et al.34 have shown that thisKT

max line is useful in character
izing the critical behavior of different numerical and analy
cal models of water. Sciortinoet al.35 have compared theKT

maxima produced by molecular-dynamics simulations us
the ST2 and TIP4P potentials and found that ST2 produ
maxima that increase quickly with decreasing temperat
terminating in a second critical point nearp52 kbar, T
5240 K. For TIP4P, the magnitude of the maxima is sign
cantly smaller than for ST2 and Sciortinoet al.35 were un-
able to determine if the line does, in fact, terminate in
second critical point.

Figure 11 comparesKT
max calculated using the new equa

tion of state and the ST2 and TIP4P potentials. TheKT
max line

for the equation of state lies between those calculated
ST2 and TIP4P, which is consistent with the TMD behav
discussed above. At low pressures~low densities! the hydro-
gen bond termpHB in Eq. ~25! acts as a repulsive force tryin

FIG. 12. The phase diagram of the new equation of state of water.
liquid–liquid spinodal terminates at a second critical point atC8 ~circled!.
The temperature of maximum density~TMD! line intersects the LDW
spinodal just aboveC8. At negative pressures the TMD line decreas
with decreasing pressure. Also shown are theKT maxima from Fig. 11.
The melting temperature (TM) line is from Wagneret al. ~Ref. 36!. The
homogeneous freezing temperature (TH) line ~Ref. 37! resembles the HDW
↔ LDW equilibrium transition line above'1.2 kbar. It is suggested that
first-order HDW→LDW phase transition may determineTH at high pres-
sures.
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to force a density commensurate with an open tetrahe
hydrogen bond formation. Thus the behavior ofKT

max near
p50 kbar is similar to that produced by the ST2 potenti
As the pressure increases, the effect ofpHB is reduced with
increasing density@cf. Eq.~29b!#, and the behavior ofKT

max is
similar to that found using the TIP4P potential.

Figure 12 shows an expanded view of the liquid–liqu
spinodal, TMD line, equilibrium line, andKT

max line calcu-
lated by the equation of state. We have also added two
of observations: The melting line from Wagneret al.36 and
homogeneous freezing temperatures (TH) measured by
Kanno et al.37 Figure 12 shows that at the pressure of t
second critical point~1 kbar!, TH5218 K, 10 degrees lowe
thanTc . This implies that this region of the phase diagra
may be experimentally accessible. Figure 12 also shows
at 1.2 kbar the homogeneous freezing temperature is ne
coincident with the HDW–LDW equilibrium curve, sugges
ing that TH may be determined by a phase transition fro
high-density ~high-entropy! liquid water to low-density
~high-entropy! liquid water at these high pressures. The
creasing divergence ofTH and the equilibrium line as tem
perature decreases is consistent with an increase in the
teresis of this first-order phase transition as the s
diffusivity decreases. A phase transition would cau
immediate nucleation because of the sudden decrease i
ice–water surface energy which according to a relation
Turnbull38 is proportional to the latent heat of melting.
discontinuity in the experimentally measuredTH or in the
statistics of the homogeneous nucleation process~i.e., vol-
ume dependence, mean time before nucleation, etc.!, if
found, would provide evidence in support of the liquid
liquid spinodal predicted by the new equation of state. El
where we discuss in more detail the use of the new equa
of state to calculate homogeneous nucleation rates for su
cooled water.39,40

V. SUMMARY

We have developed a new analytic equation of state
water that is accurate over a wide range of pressu
~0.1→3000 bar! and temperatures~234→1200 °C!, includ-
ing the supercooled region. It consists of three parts:~i! A
modified form of the SMI equation of state that is accura
for liquid water in thep-r-T range 0.1,p,1200 bar, 0
,T,700 °C, 250,r,1015 kg m23; ~ii ! A correction term
based on a proposal by Tao and Mason8 that improves the
ability of the equation of state to predict vapor pressures;~iii !
A term representing the contribution of open hydrogen bo
to the free energy of the fluid, based on the approach
Pooleet al.2

The attractive forces for the equation of state are m
eled by hydrogen bonds that contribute both internal ene
and entropy terms to the total free energy of water. Con
tent with current theories of liquids6 the attractive forces are
assumed to make only a first-order contribution to the vir
expansion. The repulsive forces are modeled using the st
principle of corresponding states developed by Ihmet al.,3

with the temperature dependence of the repulsive force
using p-V-T data for water. We are able to make accura

e

IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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initial guesses for the fitted coefficients using hydrogen bo
energy and entropy data.

We argue in Sec. III that the energy of strong hydrog
bonds,eHB , should be;213.5 kJ mol21 a value that is
close to the optimal value returned by fitting the equation
state top-V-T data that includes supercooled measureme
We followed Pooleet al. in introducing these open tetrahe
dral bonds into the equation of state using a simplified p
tition function, which we modified to include a temperatu
dependence that suppressed open HB formation above
melting line. The resulting equation of state quantitative
reproduces all of the observed anomalous behavior of su
cooled water including:~i! A density maximum near 0 °C a
1 bar that is suppressed to lower temperatures with incr
ing pressure;~ii ! the anomalous increase in heat capacity a
bar and low temperatures;~iii ! a decrease in heat capaci
below 0 °C at higher pressures. The melting point is ac
rately predicted at atmospheric pressure.

The new equation of state also predicts a liquid–liqu
spinodal and a second critical point at positive pressure.
absence of a re-entrant spinodal is consistent with exp
mental evidence that supercooled water does not appr
the limit of stability upon cooling at atmospheric pressure41

The locus of maxima of the isothermal compressibility li
between that predicted by molecular-dynamics simulati
using the TIP4P and ST2 potentials.

We also find that the equilibrium line between hig
density and low-density liquid water coincides closely to t
measured homogeneous freezing temperature at pres
above 1.2 kbar. If the equilibrium line predicted by the equ
tion of state is accurate, we would expect that the nuclea
rate of rapidly supercooled droplets at pressures above
kbar is controlled by phase change, and is independen
droplet size and cooling rate. Such nucleation observat
would provide useful information on the low-temperatu
properties of liquid water.

ACKNOWLEDGMENTS

We are grateful to Marcia Baker for introducing us
Pooleet al.2 and to Marcia and Birger Bergersen for ma
helpful discussions. We also thank an anonymous revie
for comments that improved the manuscript. This work
supported by grants from the Atmospheric Environment S
vice and the National Science and Engineering Rese
Council of Canada.

APPENDIX A: VAPOR CORRECTION TERM

Tao and Mason8 improved the ability of the original SMI
equation of state@Eq. ~8!# to predict vapor pressures by in
cluding a correction term,I 1

p5pEOS1I 1r2RT, ~A1!

wherepEOS is given by Eq.~8! an I 1 is given by

I 1'~a2B2!x~r,T!'~a2B!j~T!f~r!, ~A2!

with

j~T!5A1~ekTC /T2A2!, ~A3!
Downloaded 15 May 2002 to 128.165.156.80. Redistribution subject to A
d

n

f
s.

r-

the

r-

s-
1

-

e
ri-
ch

s

res
-
n
.2
of
ns

er
s
r-
ch

f~r!5
br

111.8~br!4
. ~A4!

Tao and Mason also related the constantsA1, A2, andk to
the Pitzer acentric factor,v, as follows:

A150.143,

A251.6412.65@exp~k21.093!21#, ~A5!

k51.09310.26@~v10.002!1/214.50~v10.002!#.

The resulting equation forI 1 is, therefore

I 15A1~a2B2!br
~ekTC /T2A2!

111.8~br!4
. ~A6!

To apply a correction of the form of Eq.~A2! to the
present equation of state, we modifyf(r) andj(T) to limit
their range of influence. The dense gas region of thep-V-T
surface is already well fit, so we want an expression forf(r)
that decreases rapidly at high densities, and an expressio
j(T) that decreases rapidly above the critical temperatu
We also want both expressions to be bounded asT→0 K so
that we can examine the low-temperature behavior of
equation of state in Sec. IV.

Versions off(r) andj(T) that have the necessary tem
perature and density dependence are

f~r!'
exp@A4~r/rc!

6.9#

11A3~r/rc!
3.3

without pHB , ~A7a!

f~r!'
exp@A4~r/rc!

6.7#

11A3~r/rc!
3.2

with pHB , ~A7b!

and

j~T!5A1exp@2A5~T/TC!6#
~T2kTC!21A2

TC
2

, ~A8!

wherek'1. Like Tao and Mason’s temperature dependen
this expression increases as the temperature decrease
unlike Tao and Mason’s it decreases rapidly to zero ab
the critical temperature.

FIG. 13. 1/G vs br using Eq.~18! which includes the hydrogen bond term
pHB and the vapor correction termI 1 @Eq. ~A2!#. Liquid data is the same as
Fig. 4 and water vapor has also been added from Haaret al. ~Ref. 42!. A
total of 1785p-V-T points were used.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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We have used two version off(r) because we want to
include a vapor correction term to the equation of state b
with and withoutpHB . Determination of the coefficientsA1

2A6 andk is done by refitting the appropriate equation@Eq.
~18! or ~24!# to data that now includes 105 vapor measu
ments in the range 80,T,370 °C, 0.4,p,200 bar, 0.16
,r,145 kg m23. Only the coefficientsA12A6 and k are
varied, the other coefficients are fixed to the values de
mined in Sec. II B 3 and Eq.~32!. Figure 13 shows the fina
form of the fit for the full equation of state with both thepHB

and I 1 terms. As expected, the inclusion ofI 1 has a negli-
gible affect on the ability of the new equation of state
collapse liquid densities to a line.

The values for the coefficients returned by the fit are
without pHB with pHB

A15212.12 A15212.16

A252.2943104 A252.2843104

A3513.60 A3513.33

A450.0527 A450.0610

A551.8784 A551.873

k50.8368 k50.8366.

APPENDIX B: FREE ENERGY AND HEAT CAPACITY
OF LIQUID WATER

We can determine the entropySand heat capacityCp of
liquid water using the analytic equation of state~without the
vapor correction term! and the Maxwell relations Eqs.~25!
and ~32!. Integrating the pressure to obtain the free ene
via Eq. ~25! produces an undetermined function of tempe
ture,c(T) which we find by fitting the free energy predicte
by the equation of state to measurements. In Sec. B 1 be
we find an analytic expression forc(T) for the equation of
state without thepHB term. Adding thepHB term to the equa-
tion of state produces a nonintegrable expression for the
tropy; in Sec. B 2 we estimate the resultingc(T) as a re-
sidual and show the resultingCP .

1. Free energy without p HB

The Helmholtz free energy ignoring hydrogen bond
AEOS follows from integration of Eq.~25! using Eq.~18!

AEOS5Aideal gas

1E
0

rS 2RTb* r22aVWr21
RTar2

12lbr Ddr

r2

5RT log r2RTb* r2aVWr2
RTa

lb
log~12lbr!

2RT~ log L2311!2RTc~T!1A0

5A1~r,T!2RTc~T!, ~B1!

whereL is the thermal wavelength in molar units given b

L5A R5/3h2

2pmKB
8/3T

, ~B2!

c(T) is an undetermined nondimensional function of te
perature, andA0 is a constant of integration.
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We approximate the undetermined functionc(T) as a
smooth function of the non-dimensional parametersTB /T
and (lb)/a, wherel, a andb(T) have values determined i
Sec. II B 3

c~T!5c11c2

TB

T

lb

a
1c3

T

TB
. ~B3!

Free energy data (Ameas) from Haaret al.41 was used to
determine the coefficients ofc(T) and A0 in Eq. ~B1! by
minimizing the differenceAmeas2AEOS. The optimal fitted
constants are found to beA0521.47 kJ mol21 and
(c1 ,c2 ,c3)5 ~5.13, 20.04, and 2.73!, respectively.

We plot the fitted function2RTc(T)5AEOS2A1 in
Fig. 14. For comparison we have included the measureme
plotted ascmeas5Ameas2A1. The absolute entropy,S0, and
internal energy,U0, at the triple point were also needed
the calculation ofAmeas. They were calculated from Cox

FIG. 14. 2RTc vs T calculated from Eq.~B3! along with rms deviation,
Dev. The points are calculated from Eq.~B1! and data from Haaret al. ~Ref.
42! assumingS0563.34 J mol21 K21 andU05242.9 kJ mol21 at the triple
point.

FIG. 15. Plot of]/]T(RTcHB) obtained through Eq.~B4! as described in
Section B 2. The points are obtained from the entropy data of Haaret al.
~Ref. 42! and from the integratedCp data of Angell~Ref. 44!. For compari-
son,]/]T(RTc)22R ln V0 wherec is given by Eq.~B3! is also shown.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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et al.43 and were estimated asS0563.34 J mol21 K21 and
U05242.9 kJ mol21 taking the enthalpy of water19 to be
256 kJ mol21.

2. Free energy and Cp with p HB

The addition of the open hydrogen bond termpHB to the
equation of state produces a more complex expression
AEOS that is no longer a function of only the dimensionle
parameters,T/TB and (lb)/a. We will determine the new
form of c(T) using entropy data that extends to supercoo
temperatures. The corresponding expression for the ent
from the equation of state,SEOS is

SEOS52
]A1

]T
1

]RTcHB~T!

]T
22

]AHB

]T
, ~B4!

whereA1 is given by Eq.~B1! andAHB by Eq. ~26!.
We find the term](RTcHB)/]T as the residualDS

5Smeas1](A112AHB)/]T whereSmeasconsists of our inte-
gration of the supercooled heat capacity measurement
Angell44 and entropy data from Haaret al.42 For tempera-
tures below the glass transition temperature (T5136 K) we
take Smeas to be the entropy of ice, while between 136 a
231 K Smeas is joined by a smooth curve to Angell’s inte
grated values.

Figure 15 shows a third-order polynomial fit of the r
sidualDS5](RTcHB)/]T. Also shown~small dots! are the
measurements used in the fit. To the left of the dotted ve
cal line atT5250 K is the extrapolation of](RTcHB)/]T
to the glass transition at 136 K. For comparison we show
square boxes the values for](RTc)/]T22R ln V0 calcu-
lated using thec(T) found in Sec. B 1. To permit direc
comparison of Eqs.~B3! and ~B4! we have added
22R ln V0, which is 2]AHB /]T in the limit f→0, to
](RTc)/]T given by Eq.~B3!.

Figure 16 shows heat capacities found using Eqs.~B4!
and ~32! with c(T) determined by numerical integration o
the polynomial fit. The increase inCp near the critical tem-
perature and pressure and the increase in the superco
region are both produced. The anomalousCp maximum of

FIG. 16. Isobaric heat capacity,Cp . s from Haar et al. ~Ref. 42! and
Angell ~Ref. 44!. Note:Cp at 400 bar has been limited to 15 kJ kg21 K21.
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about 6.15 J mol21 K21 at 1 bar is consistent with a continu
ous transition of states from supercooled water to ice.

Although determiningc(T) numerically prohibits us
from extrapolatingSEOSto the deeply supercooled part of th
phase diagram, we note that the sharp increase inCp seen in
Fig. 16 is due to the hydrogen bond termAHB , and not to the
fitted functioncHB(T). Negative values of](RTcHB)/]T act
through Eq.~32! to decrease, not increase, the heat capac
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